Abstract

Time-resolved Raman induced Kerr effect spectroscopy in the optical heterodyne detection configuration has been employed to investigate intermolecular, intramolecular, and reorientational dynamics in neat trichloroethylene (TCE). The reorientation time constant is directly measured from the time-resolved data, while Fourier transformation of the time-resolved data yields the intermolecular and intramolecular vibrational spectrum. Use of ultrashort, femtosecond pulses enables excitation of depolarized Raman-active transitions between 1 and 500 cm −1. The intramolecular vibrations have been identified using a previous assignment. The limitations imposed by the laser and detector noise, and other nonlinear optical processes that are manifest at high pulse intensities, on the use of this time-domain technique for performing chemical species detection are discussed using carbon tetrachloride as an example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call