Abstract

We present a semiconductor saturable absorber mirror (SESAM) mode-locked thin-disk laser generating 80 μJ of pulse energy without additional amplification. This laser oscillator operates at a repetition rate of 3.03 MHz and delivers up to 242 W of average output power with a pulse duration of 1.07 ps, resulting in an output peak power of 66 MW. In order to minimize the parasitic nonlinearity of the air inside the laser cavity, the oscillator was operated in a vacuum environment. To start and stabilize soliton mode locking, we used an optimized high-damage threshold, low-loss SESAM. With this new milestone result, we have successfully scaled the pulse energy of ultrafast laser oscillators to a new performance regime and can predict that pulse energies of several hundreds of microjoules will become possible in the near future. Such lasers are interesting for both industrial and scientific applications, for example for precise micromachining and attosecond science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.