Abstract

Considerable progress has been in the last decade in the fields of photonic networks and ultra-fast optics. The past few years has seen the widespread use of wavelength division multiplexing (WDM) to provide enormous point-to-point capacity in the backbone and metro area networks. Remarkable progress in electronics, in terms of both costs and performance speeds, has to some extent alleviated the 'electronic bottleneck'. Developments in fiber-optics such as novel fiber types and Raman amplification have opened up additional wavelength regions of operation resulting in great expansion of usable fiber bandwidth. There exist unique opportunities for ultrafast technologies - a subject of much interest in the last decade and reaching a point of maturity - to complement these advances and spark the next generation networks. In our talk, we will mention two networking environments very different from WDM - (1) optical time division multiplexing (OTDM) and (2) optical code division multiple access (OCDMA). We will look at the potential of both these scenarios for different applications, focusing in particular on the latter as an approach that provides maximum flexibility to utilize the immense bandwidth of the optical fiber. We will also describe various ultra-fast technologies that have been developed e.g. .high repetition rate pulsed lasers, ultra-fast optical switches, time delay elements etc. which have a direct relevance to both these types of networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.