Abstract
Developing earth-abundant electrocatalysts useful for hydrogen evolution reactions (HER) is critical for electrocatalytic water splitting driven by renewable energy. Molybdenum carbide (Mo2C) with the crystal structure of hexagonal symmetry has been identified to be an excellent HER catalyst due to its platinum-like electronic structure while the synthesis of Mo2C is generally time consuming and energy intensive. Herein, we demonstrated the ultrafast synthesis of a Mo2C-based electrocatalyst with Joule heating at 1473 K for only 6 s. Benefitting from several advantages including efficient catalytic kinetics, enhanced charge transport kinetics and high intrinsic activity, the as-prepared catalyst exhibited drastically enhanced HER performance compared with commercial Mo2C. It showed an overpotential of 288 mV for achieving a current density of −50 mA cm−2 and good stability, which highlighted the feasibility of the Joule heating method towards preparing efficient electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.