Abstract

This study represents a well-dispersed gold nanoparticles (AuNPs) synthesis process via cellulose nanocrystals (CNC) which acts as both reducing and supporting agent. The synthesis process was ultrafast and completed in a few seconds using microwave irradiation. The entire synthesis process was cost-effective, sustainable and eco-friendly. The synthesized (AuNPs/CNC) nanocomposite was investigated by transmission electron microscopy, selected area electron diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV–vis spectroscopy. The obtained AuNPs were well accumulated on the CNC surface and had a uniform spherical shape with an average diameter of 8 ± 5.3 nm. The diameter of AuNPs could be altered by tuning the concentration of CNC suspension. The synthesized AuNPs/CNC nanocomposite film exhibited excellent degradation properties against various organic dyes, namely, Allura red, Congo red, Rhodamine B and Amaranth. The ultrafast degradation reactions followed pseudo first order kinetics. In the catalytic degradation reaction, AuNPs/CNC was transmitting electrons from a donor (NaBH4) to an acceptor (a dye).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.