Abstract

The ultrafast electronic structures of the charge density wave material 1T-TiSe_{2} were investigated by high-resolution time- and angle-resolved photoemission spectroscopy. We found that the quasiparticle populations drove ultrafast electronic phase transitions in 1T-TiSe_{2} within 100fs after photoexcitation, and a metastable metallic state, which was significantly different from the equilibrium normal phase, was evidenced far below the charge density wave transition temperature. Detailed time- and pump-fluence-dependent experiments revealed that the photoinduced metastable metallic state was a result of the halted motion of the atoms through the coherent electron-phonon coupling process, and the lifetime of this state was prolonged to picoseconds with the highest pump fluence used in this study. Ultrafast electronic dynamics were well captured by the time-dependent Ginzburg-Landau model. Our work demonstrates a mechanism for realizing novel electronic states by photoinducing coherent motion of atoms in the lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call