Abstract
Electronic states in 2D materials can exhibit pseudospin degrees of freedom, which allow for unique carrier-field interaction scenarios. Here, we investigate ultrafast sublattice pseudospin relaxation in graphene by means of polarization-resolved photoluminescence spectroscopy. Comparison with microscopic Boltzmann simulations allows to determine a lifetime of the optically aligned pseudospin distribution of $12\pm 2\,\text{fs}$. This experimental approach extends the toolbox of graphene pseudospintronics, providing novel means to investigate pseudospin dynamics in active devices or under external fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.