Abstract
Time-resolved Faraday rotation measurements in the ultraviolet have been performed to reveal the ultrafast spin dynamics of electrons in colloidal ZnO quantum dots. Oscillating Faraday rotation signals are detected at frequencies corresponding to an effective g factor of g = 1.96. Biexponential oscillation decay is observed that is due to (i) rapid depopulation of the fundamental exciton (tau = 250 ps) and (ii) slow electron spin dephasing ( T 2 = 1.2 ns) within a metastable state formed by hole-trapping at the quantum dot surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.