Abstract

Transient reflectance of gold was measured using ultrafast spectroscopy by varying the wavelength of the probe laser beam in the visible range. Based on the band structure of gold, the influence of the probe beam wavelength on the signal trend is analyzed in terms of sensitivity, effect of nonthermalized electrons, and relaxation rate. It is found that probing around 490 nm renders the best sensitivity and a simple linear relation between the transient reflectance and the electron temperature. The two-temperature model (TTM) is applied to calculate the electron-phonon coupling factor by fitting the transient reflectance signal. This work clarifies the ultrafast energy transfer dynamics in gold and the importance of using proper probe laser wavelength for modeling the transient heat transfer process in metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call