Abstract
Sequence-variation analysis is conventionally performed on mapping results that are highly redundant and occasionally contain undesirable heuristic biases. A straightforward approach to single-nucleotide polymorphism (SNP) analysis, using the Burrows-Wheeler transform (BWT) of short-read data, is proposed. The BWT makes it possible to simultaneously process collections of read fragments of the same sequences; accordingly, SNPs were found from the BWT much faster than from the mapping results. It took only a few minutes to find SNPs from the BWT (with a supplementary data, fragment depth of coverage [FDC]) using a desktop workstation in the case of human exome or transcriptome sequencing data and 20 min using a dual-CPU server in the case of human genome sequencing data. The SNPs found with the proposed method almost agreed with those found by a time-consuming state-of-the-art tool, except for the cases in which the use of fragments of reads led to sensitivity loss or sequencing depth was not sufficient. These exceptions were predictable in advance on the basis of minimum length for uniqueness (MLU) and FDC defined on the reference genome. Moreover, BWT and FDC were computed in less time than it took to get the mapping results, provided that the data were large enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.