Abstract
Photonic computing has been intensively studied to explore the ultrahigh bandwidth of lightwaves. However, electronic support is indispensable for the post-processing and control of photonic systems owing to the difficulties encountered in all-optical processing. Herein, we demonstrate an ultrafast silicon circuitry capable of conducting thresholding operations on incoming chaotically oscillating high-bandwidth signals. Such circuits are critical elements in ultrafast random-number generators and photonic reinforcement learning that exploit chaotically oscillating time series. The circuit design, including active inductors for bandwidth expansion, and proof-of-principle fabricated device operations are demonstrated using a 180 nm silicon complementary metal–oxide–semiconductor technology node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.