Abstract

Direct grafting of carbon nanotubes (CNTs) on fibre textiles is a promising strategy to functionalize conventional fibre-reinforced polymer composites with extra merits such as integrated sensing capability. In this study, CNTs are in situ grafted on glass fibre (GF) via chemical vapor deposition at a low synthesis temperature (500 °C). By regulating the mass fractions of CNTs, the quantum tunnelling effect can be triggered among CNT nanoparticles, with which the CNT-grafted GF textiles manifest high sensitivity to structure-guided ultrasonic waves in a frequency regime from 175 to 375 kHz. With ignorable degradation in mechanical attributes due to this direct grafting processing as affirmed by ASTM-complied tests (ASTM C1557 and D3039), the CNT-grafted GF textiles demonstrate the great potential in developing hybrid functional composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.