Abstract

The roles of carrier-carrier interactions and non-equilibrium phonons on the ultrafast relaxation of photoexcited carriers in GaAs are examined. At low carrier concentrations, the e-ph interaction is the main energy loss channel for hot electrons, while at high carrier concentrations, the e-h interaction is the primary energy loss channel. This latter result follows from the high e-h scattering rate, the screening of the e-ph interaction, and the high efficiency of hole-phonon scattering through the unscreened deformation potential interaction. The electron energy-loss rates through the e-h interaction increases as the excitation energies and intensities are increased. In two-dimensional systems, the e-h interaction further complicates the problem since the transverse optical modes out are also driven out of equilibrium by their interaction with the holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call