Abstract

Metal halide perovskite CsPbI3 quantum dots (QDs) have sparked widespread research due to their intriguing optoelectronic. However, the CsPbI3 QDs undergo inevitable aging and luminescence quenching caused by the weak binding ability of oleate (OA-)/oleylammonium (OAm+), hindering further practical application. Herein, we have realized ultrafast rejuvenation of the aged CsPbI3 QDs that have lost their photoluminescence performance based on a 1-dodecanethiol (DDT) surface ligand to restore the outstanding red light emission with a high photoluminescence quantum yield (PLQY) from 25 to 90%. Furthermore, CsPbI3 QDs with DDT surface treatment maintain a cubic phase and high PLQY value even after 35 days. The DDT ligands can form a strong bond with Pb2+ and passivate I- ion vacancies, enhancing radiative recombination efficiency and thereby improving the PLQY of the QDs. The stable yet easily accessible surface of the DDT-capped CsPbI3 QDs was successfully employed as white LEDs and exhibited considerable enhanced luminous performance, suggesting promising application in solid-state lighting fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.