Abstract

Point-of-care real-time reverse-transcription polymerase chain reaction (RT-PCR) facilitates the widespread use of rapid, accurate, and cost-effective near-patient testing that is available to the public. Here, we report ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular diagnostics. The plasmonic real-time RT-PCR system features an ultrafast plasmonic thermocycler (PTC), a disposable plastic-on-metal (PoM) cartridge, and an ultrathin microlens array fluorescence (MAF) microscope. The PTC provides ultrafast photothermal cycling under white-light-emitting diode illumination and precise temperature monitoring with an integrated resistance temperature detector. The PoM thin film cartridge allows rapid heat transfer as well as complete light blocking from the photothermal excitation source, resulting in real-time and highly efficient PCR quantification. Besides, the MAF microscope exhibits close-up and high-contrast fluorescence microscopic imaging. All of the systems were fully packaged in a palm size for point-of-care testing. The real-time RT-PCR system demonstrates the rapid diagnosis of coronavirus disease-19 RNA virus within 10 min and yields 95.6% of amplification efficiency, 96.6% of classification accuracy for preoperational test, and 91% of total percent agreement for clinical diagnostic test. The ultrafast and compact PCR system can decentralize point-of-care molecular diagnostic testing in primary care and developing countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.