Abstract

Deep ultraviolet (DUV) photodetectors have wide-range applications in satellite communications, air purification, and missile-plume detection. However, the critical barriers for the currently available wide-band gap semiconductor film-based DUV photodetectors are their low efficiency, complicated processes, and lattice mismatch with the substrate. Quantum dot (QD) devices prepared using solution-based methods can solve these problems. However, so far, there are no reports on photovoltaic-type DUV photodetectors using QDs. In this study, we propose a novel methodology to construct a hybrid zero-/two-dimensional DUV photodetector (p-type graphene/ZnS QDs/4H-SiC) with photovoltaic characteristics. The device exhibits excellent selectivity for the DUV light and has an ultrafast response speed (rise time: 28 μs and decay time: 0.75 ms), which are much better than those reported for conventional photoconductive photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.