Abstract
Atomically thin transition-metal dichalcogenides (TMDs) exhibit strong light–matter interaction and pronounced excitonic behavior. Understanding the nonequilibrium dynamical processes of photoexcited carriers in such materials is a key step in view of their technological applications. Here, we review the ultrafast photophysics of 2D TMDs and related heterostructures (HSs) measured by femtosecond optical spectroscopy. First, we provide a general introduction on the physics of the materials and a brief explanation of the ultrafast optical techniques. Then we discuss the physical processes governing their nonequilibrium optical response, with a particular emphasis on the intervalley scattering dynamics, and the charge-transfer processes in 2D HSs. We conclude by discussing open issues and perspectives for future experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.