Abstract

Auger recombination is an ultrafast and unnegligible photophysical process in colloidal semiconductor quantum dots (QDs) due to competition with charge separation or radiative recombination processes, pivotal for their applications ranging from bio-labeling, light-emitting diodes, QD lasing to solar energy conversion. Among diverse QDs, ternary chalcopyrite is recently receiving significant attention for its heavy-metal free property and remarkable optical performance. Given deficient understanding of the Auger process for ternary chalcopyrite QDs, CuInS2 QDs with various sizes are synthesized as a representative and the bi-exciton lifetime (τBX) is derived by virtue of ultrafast time resolved absorption spectrum. The trend of τBX varying with size is consistent with the universal scaling of τBX versus QD volume (V): τBX = γV. The scaling factor γ is 6.6 ± 0.5 ps·nm-3 for CuInS2 QDs, and the bi-exciton Auger lifetime is 4-5 times slower than typical CdSe QDs with the same volume, suggesting reduced Auger recombination rate in ternary chalcopyrite. This work facilitates clearer understanding of Auger process and provides further insight for rational design of light-harvesting and emitting devices based on ternary chalcopyrite QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.