Abstract

We have synthesized L-cysteine and oleylamine stabilized CsPbBr3 perovskite quantum dots (PQDs) and coupled them with gold nanoparticles (AuNPs). The PQDs and AuNPs, as well as their hybrid nanostructures (HNS), were characterized using UV-visible (UV-vis) and photoluminescence (PL) spectroscopy. The UV-vis spectra show absorption bands of the HNS at 503 and 520nm, attributed mainly to PQDs and AuNPs, respectively. The PQDs show a strong excitonic PL band peaked at 513nm from PQDs. The HR-TEM results show the formation of hybrid structures between PQDs and AuNPs, which is also supported by the PL quenching of the PQDs by the coupled AuNPs. Ultrafast dynamics of the exciton and charge carriers in the HNS and pristine PQD were studied using femtosecond transient absorption. Multiexponential fitting of the dynamic data revealed the existence of shallow and deep trap states in pristine PQDs and ultrafast electron transfer from PQDs to AuNPs in the HNS. A kinetic model was proposed to account for the key dynamic processes involved and to extract the time for electron transfer from PQDs to AuNPs in the HNS, found to be ∼2ps. Dynamic processes in pristine PQDs are largely unchanged by HNS formation with AuNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.