Abstract

The photodissociation dynamics of highly excited iodobenzene from the C band absorption has been studied by femtosecond time-resolved ion yields techniques. Detailed photodissociation routes are discussed with the aid of high-level, spin-orbit resolved ab initio calculations of 1D potential energy curves. Upon 200 nm excitation within the C band, iodobenzene molecules on 7B2 and 7B1 states decay to 7A1 and 8B2 states through internal conversion in 75 fs, with electronic energy converted into high vibrational energy of 7A1 and 8B2 states. Subsequently, 7A1 and 8B2 states decay through internal vibrational energy redistribution in 540 fs, accompanied by the excited C-I mode and the resulting cleavage of the C-I bond. The overall time for the reaction starting from the phenyl-type modes and ending in final C-I fragmentation for I(2P3/2) production is 1.2 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.