Abstract
Rhodopsin from the eubacterium Exiguobacterium sibiricum (ESR) performs the function of light-dependent proton transport. The operation of ESR is based on the ultrafast photochemical reaction of isomerization of the retinal chromophore, which triggers dark processes closed in the photocycle. Many parameters of the photocycle are determined by the degree of protonation of Asp85 – the primary counterion of the chromophore group and the proton acceptor. ESR in detergent micelles pumps protons most efficiently at pH 9, when Asp85 is almost completely deprotonated. In this work, the photochemical reaction of ESR at pH 9.5 was studied by femtosecond laser absorption spectroscopy. It was shown that photoisomerization of the chromophore group occurs in 0.51 ps, and the contribution of the reactive excited state is about 80%. A comparison with the data we obtained at pH 7.4 showed that at pH 9.5 the reaction proceeds much faster and more efficiently. The data obtained confirm the important role of the chromophore group counterion in the photoactivated processes of rhodopsins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.