Abstract

Laser-triggered electron emission from sharp metal tips has been demonstrated in recent years as a high brightness, ultrafast electron source. Its possible applications range from ultrafast electron microscopy to laser-based particle accelerators to electron interferometry. The ultrafast nature of the emission process allows for the sampling of an instantaneous radio frequency (RF) voltage that has been applied to a field emitter. For proof-of-concept, we use an RF signal derived from our laser's repetition rate, mapping a 9.28 GHz signal in 22.4 fs steps with 28 mv accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.