Abstract
In this paper, we first demonstrated the effectiveness of imaging in a tissue phantom with isotropic scattering by using polarization discrimination combined with the time gating method. In this situation with lean pork as targets and diluted milk as tissue phantom, the reduced scattering coefficient mapping manifests clear images. However, such an imaging technique became less effective in filamentous tissues, such as chicken breast tissues, because filamentous tissue had a deterministically anisotropic property. It led to coherent coupling between the two linear polarization components. In this situation, we employed the time-gated degree of polarization (DOP) imaging technique that based on the Stokes formalism. The results showed that the DOP measurement was quite effective in high-quality imaging of objects in filamentous tissues. The improvement of this method was attributed to the unchanged polarization part under the coupling processes of various polarization components. Because the Stokes vector provides complete polarization information of transmitted light, this technique is quite effective for imaging and characterization in filamentous tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biomedical Engineering: Applications, Basis and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.