Abstract

Modern electronics are founded on switching the electrical signal by radio frequency electromagnetic fields on the nanosecond time scale, limiting the information processing to the gigahertz speed. Recently, optical switches have been demonstrated using terahertz and ultrafast laser pulses to control the electrical signal and enhance the switching speed to the picosecond and a few hundred femtoseconds time scale. Here, we exploit the reflectivity modulation of the fused silica dielectric system in a strong light field to demonstrate the optical switching (ON/OFF) with attosecond time resolution. Moreover, we present the capability of controlling the optical switching signal with complex synthesized fields of ultrashort laser pulses for data binary encoding. This work paves the way for establishing optical switches and light-based electronics with petahertz speeds, several orders of magnitude faster than the current semiconductor-based electronics, opening a new realm in information technology, optical communications, and photonic processor technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.