Abstract

Many proposed photonic quantum networks rely on matter qubits to serve as memory elements1,2. The spin of a single electron confined in a semiconductor quantum dot forms a promising matter qubit that may be interfaced with a photonic network3. Ultrafast optical spin control allows gate operations to be performed on the spin within a picosecond timescale4,5,6,7,8,9,10,11,12,13,14, orders of magnitude faster than microwave or electrical control15,16. One obstacle to storing quantum information in a single quantum dot spin is the apparent nanosecond-timescale dephasing due to slow variations in the background nuclear magnetic field15,16,17. Here we use an ultrafast, all-optical spin echo technique to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors18 and repeater networks1,2. An ultrafast, all-optical spin echo technique is used to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors and repeater networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call