Abstract

The absorptive and refractive third order nonlinear optical properties exhibited by a ZnO thin solid film with fluorine nanoparticles were studied with picosecond and femtosecond pulses using different techniques. We were able to evaluate the photoconductivity of the material and the quenching of the induced birefringence observed in the presence of two-photon absorption. The samples were prepared by a chemical spray deposition technique. In order to investigate the different contributions of the third order nonlinearities of the film, we analyzed the vectorial self-diffraction effect and the optical Kerr transmittance observed in the sample. A dominantly absorptive nonlinearity was measured at a 532 nm wavelength with 50 ps pulses, while nonlinear refraction was found to be negligible in this regime. On the other side, a pure electronic refractive third order nonlinearity without the contribution of nonlinear absorption was detected at 830 nm with 80 fs pulse duration. A quasi-instantaneous optical response and a strong enhancement in the ultrafast nonlinear refraction with the inhibition of the picosecond two-photon absorption mechanism were measured for the case of the femtosecond excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.