Abstract

The understanding of ultrafast short-range electron transfer (ET) in proteins remains challenging, and thorough studies on well-defined biological systems are demanding. Here, we utilized two types of flavodoxins and designed a series of mutants on two positions to systematically characterize the complete photoinduced redox cycles. We identified one position with a favorable orientation and distance for ultrafast ET in a few femtoseconds and the other position is relatively flexible with a longer ET time scale. We found that all forward and back ET dynamics are ultrafast nonequilibrium processes, occurring through highly vibronic states and ending in vibrationally hot ground states with subsequent cooling relaxation to efficiently dissipate photon energy into the protein environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call