Abstract

Environmentally friendly, ultrafast display pixels of micrometer sizes are fabricated with nanometer-thick gold films and Si/SiO2 wafers. The color displayed is due to both the plasmon response of the gold film and the optical interference from the Fabry-Peerot cavity formed by the underlying silicon substrate, the semitransparent gold film and the air gap between them. When an electric potential is applied to the gold film, the electrostatic force induces an attraction between the gold film and the silicon wafer. Due to the flexibility of the film, the size of the air gap changes, resulting in a changing color. By applying different driving signals, we have achieved cyan, magenta, and yellow reflected colors. The maximum switching rate of the pixel is primarily determined by the thickness dependence of the metal drum and its Young's modulus and is typically in the MHz regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call