Abstract

In the aim of limiting the destructive effects of collapsing bubbles, the regime of stable cavitation activity is currently targeted for sensitive therapeutic applications such as blood-brain barrier opening by ultrasound. This activity is quantified through the emergence of the subharmonic component of the fundamental frequency. Due to the intrinsically stochastic behavior of the cavitation phenomenon, a better control of the different (stable or inertial) cavitation regimes is a key requirement in the understanding of the mechanisms involving each bubble-induced mechanical effect. Current strategies applied to stable cavitation control rely on the use of either seeded microbubbles or a long-lasting pulse to reinitiate subharmonic emission. The present work aims at developing an ultrafast (inferior to 250 μs) monitoring and control of subharmonic emissions during long-pulsed (50 ms) sonication. The use of a FPGA-based feedback loop provides reproducible level of subharmonic emissions combined with temporal stability during the sonication duration. In addition, stable cavitation events are differentiated from the broadband noise characterizing inertial cavitation activity, with perspectives in the discrimination of the involved mechanisms underlying bubble-mediated therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.