Abstract

We present molecular photoionization by two-color 2ω1=ω2 orthogonally polarized ultraviolet laser pulses. Simulations are performed on aligned H2+ by numerically solving time-dependent Schrödinger equations. Two ionization processes with one ω2 photon interfering with two ω1 photon absorption are studied at different molecular alignments. Molecular frame photoelectron momentum and angular distributions exhibit asymmetries which are functions of the relative pulse phase. For resonant excitation processes by the ω1 pulse, symmetric distributions are obtained. An attosecond ionization model is adopted to describe the ultrafast ionization dynamics. The dependence of the ionization asymmetry on the molecular alignment allows to further monitor interference effects on orbital symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.