Abstract

Fundamental questions arise regarding the possibility and nature of melting and the ensuring mechanism of ablation in femtosecond laser processing of materials. A comprehensive experimental study is presented to address these issues in depth and detail. The mechanisms of ultra-fast laser-induced phase-transformations during the laser interactions with materials have been investigated by time-resolved pump-and- probe imaging in both vacuum and ambient environment. The temporal delay between the pump and probe pulses is set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. Ejection of material in the form of nanoparticles is observed at several picoseconds after the main pulse. The ignition of surface-initiated plasma into the ambient air immediately following the pump pulse and the ejection of ablated material in the picosecond and nanosecond time scales have been proven by high-resolution, ultra-fast shadowgraphy. To further dissect the origin and evolution of the ablation process, a double pulse experiment has been implemented, whereby both the pump and probe pulses are split into two components each separated by variable temporal delays. A diffractive optical element is used to fabricate micro-channels in silicon wafers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call