Abstract

We report a method of femtosecond laser-induced vitrification of crystalline tracks laser-written in glasses with different crystallization ability including lanthanum borogermanage, barium titanium silicate and lithium niobium silicate glasses. We have found that crystalline tracks consisting of nonlinear optical LaBGeO5 and BaTi2Si2O8 phases corresponding to glass-forming compositions could be readily amorphized by the femtosecond beam, whereas the laser-induced vitrification of a track consisting of LiNbO3 crystalline phase possessing a non-glass-forming composition is more complicated but also possible. The suggested technique provides reversibility of femtosecond laser-induced space-selective crystallization of glasses and thus extends the functionality of the direct laser writing of crystal-in-glass architectures that is important for the fabrication of novel integrated optical components and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.