Abstract

Ultrafast laser processing of zirconia/alumina nanocomposite ceramics, the current gold standard material for ceramic bearing components in orthopedics, was investigated. Instead of considering the substrate as a homogeneous material, as commonly assumed in laser micromachining, the damage behavior of different phases around the laser ablation threshold upon ultrafast laser irradiation was investigated. Under appropriate experimental conditions, the zirconia phase was selectively ablated while the alumina phase remained intact. The origin of this selective ablation behavior and its relationship with the material band gaps were discussed. Due to the nonlinear absorption mechanisms under ultrafast laser irradiation, the zirconia phase, with its band gap of 5.8 eV, can absorb more laser energy than the alumina phase which has a larger band gap of 8.8 eV. The negligible heat diffusion length ensures that the absorbed laser energy remains confined in the individual phases, leading to the selective ablation of zirconia phase under the given laser fluence. Based on this observation, an ultrafast laser selective phase removal method which can be used to modify the surface composition of nanocomposite materials consisting of phases with different band gaps was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call