Abstract

The effect of ambient pressure on Stark broadening of emission lines from neutrals and ions in an ultrafast laser (100 fs, 800 nm) produced zinc plasma is investigated. Measured spectra reveal that the full width at half maximum (δλ) of neutral lines remains unchanged in the pressure range of 10−6 to 10−1 Torr, shows an even fluctuation in the pressure range of 0.1 to 100 Torr, and then increases with pressure. On the other hand, δλ of ion lines is nearly a constant from 10−6 to 10−3 Torr, and then increases consistently with ambient pressure. A line narrowing of neutral emissions observed in the region of 1 to 100 Torr can be attributed to larger plasma temperatures, whereas the consistent increase in δλ with pressure seen for ion emission results from the prevalence of additional broadening mechanisms related to Coulomb interactions, ion-ion interaction, and Debye shielding. An accurate knowledge of emission line width is crucial for unambiguously calculating number density values for any given ambient pressure. Moreover, it can be relevant for the design of narrow line width, bright plasma sources for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.