Abstract

Pulsed laser excitation induced conductance changes in colossal magnetoresistance material ${\mathrm{La}}_{0.7}{\mathrm{Ca}}_{0.3}{\mathrm{MnO}}_{3}$ were studied on the picosecond time scale. A two-component signal was seen consisting of a fast positive transient associated with the paramagnetic insulating state and a slower negative signal associated with the ferromagnetic metallic state. The fast component corresponds to the photoionization of the Jahn-Teller small polaron. The slow component is explained in terms of the reduced carrier mobility due to photogenerated magnetic excitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.