Abstract
Vanadium dioxide (VO2) is a strongly correlated electronic material and has attracted significant attention due to its metal-to-insulator transition and diverse smart applications. Traditional synthesis of VO2 usually requires minutes or hours of global heating and low oxygen partial pressure to achieve thermodynamic control of the valence state. Further patterning of VO2 through a series of lithography and etching processes may inevitably change its surface valence, which poses a great challenge for the assembly of micro- and nanoscale VO2-based heterojunction devices. Herein, we report an ultrafast method to simultaneously synthesize and pattern VO2 on the time scale of seconds under ambient conditions through laser direct writing on a V5S8 "canvas". The successful ambient synthesis of VO2 is attributed to the ultrafast local heating and cooling process, resulting in controlled freezing of the intermediate oxidation phase during the relatively long kinetic reaction. A Mott memristor based on a V5S8-VO2-V5S8 lateral heterostructure can be fabricated and integrated with a MoS2 channel, delivering a transistor with abrupt switching transfer characteristics. The other device with a VSxOy channel exhibits a large negative temperature coefficient of approximately 4.5%/K, which is highly desirable for microbolometers. The proposed approach enables fast and efficient integration of VO2-based heterojunction devices and is applicable to other intriguing intermediate phases of oxides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.