Abstract

While 2D transition metal dichalcogenides (TMDs) feature interesting layer-tunable multivalley band structures, their preeminent role in determining the photoexcitation charge transfer dynamics in 2D heterostructures (HSs) is yet to be unraveled, as previous charge transfer studies on TMD HSs have been mostly focused on monolayers with a direct bandgap at the K valley. By ultrafast transient absorption spectroscopy and deliberately designed few-layer WSe2/WS2 HSs, we have observed an ultrafast interlayer electron transfer from photoexcited few-layer WSe2 to WS2, prior to intralayer relaxation to lower lying dark valleys. More interestingly, we have identified an unconventional ∼0.5 ps electron back-transfer process after the initial interlayer electron transfer in HSs with WSe2 layers ≥ 3, regenerating indirect intralayer excitons. The result reveals an ielectron and valley relaxation pathway mediated by interlayer charge transfer in 2D HSs, faster than intralayer relaxation. It also sheds light on the origin of generally observed robust ultrafast interlayer charge transfer in TMD HSs and provides guidance toward optoelectronic and valleytronic devices using few-layer TMDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call