Abstract

Dye sensitized nanocrystalline semiconductor films are used as a photoactive part in dye-sensitized solar cells, which are recently attracting much interest both in basic and applied studies. Electron transfer reaction from a photoexcited dye molecule, which is chemically adsorbed on the surface of semiconductor, into the semiconductor conduction band is the primary step to generate photocurrent. Ultrafast pump-probe spectroscopy with a <100 fs time resolution and in a visible-to-IR wavelength range was used to elucidate the interfacial electron transfer mechanism in dye-sensitized nanocrystalline metal oxide films of ZnO, TiO2, and others. We found two types of reaction paths; one is direct electron transfer from the excited molecule to the conduction band and the other is stepwise transfer through an intermediate, which was assigned to a charge transfer complex formed by the excited molecule and a surface state on the semiconductor. The order of the observed electron transfer rates for different semiconductors was qualitatively explained by the idea of the density of electron acceptor states; that is, the larger the density of states near the energy level of the excited molecules was, the faster the electron transfer took place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.