Abstract

The interfacial charge dynamics was crucial for semiconductor heterostructure photocatalysis. Through the rational design of the heterostructure interface, heterojunction expressed variable recombination and migration dynamics for excited carriers. Herein, followed by a typical chemical bath strategy with the hexagonal cadmium sulfide (CdS) overlapped on the exfoliated molybdenum disulfide (MoS2) film, we developed a cadmium sulfide/molybdenum disulfide (CdS-MoS2) nano-heterojunction and investigated the interfacial charge dynamics for photocatalytic hydrogen evolution. Photoelectron spectroscopy detected an energetic offset between CdS and MoS2, revealing the formation of an interfacial electric field with efficient charges separation. Through transient absorption spectra, we demonstrated the type-II contact at the CdS-MoS2 interface. Driven by the electric field, the excited carriers separated and rapidly migrated to sub-band defects of CdS within the first 500 fs. The carriers-restricted defects provided catalytic active sites, endowing CdS-MoS2 a highly efficient photocatalytic capability. Consequentially, the CdS-MoS2 achieved an enhanced hydrogen evolution rate of 2.3 mmol·g−1·h−1 with significantly stronger photocurrent density. This work gave an insight to the channel of interfacial separation and migration for excited carriers, which could contribute to the interfacial engineering of advanced heterojunction photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.