Abstract
Vanadium diselenide (VSe2) has recently been highlighted as an efficient 2D electrode owing to its extra-high conductivity, thickness controllability, and van der Waals contact. However, as the electrode, applications of VSe2 to various materials are still lacking. Here, by employing ultrafast time-resolved spectroscopy, we study VSe2-thickness-dependent interfacial effects in heterostructures with topological insulator Bi2Se3 that is severely affected by contact with conventional 3D electrodes. Our results show unaltered Dirac surface state of Bi2Se3 against forming junctions with VSe2, efficient ultrafast hot electron transfer from VSe2 to Bi2Se3 across the interface, shortened metastable carrier lifetimes in Bi2Se3 due to dipole interactions enabling efficient current flow, and the electronic level shift (~tens meV) of bulk states of Bi2Se3 by interfacial interactions, which is ~10 times lower compared to conventional electrodes, implying weak Fermi level pinning. Our observations confirm VSe2 as an ideal electrode for efficient Bi2Se3-based-applications with full utilization of topological insulator characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.