Abstract

The ultrafast photoinduced insulator-metal transition in VO${}_{2}$ is studied at different temperatures and excitation fluences using multi-THz probe pulses. The spectrally resolved midinfrared response allows us to trace separately the dynamics of lattice and electronic degrees of freedom with a time resolution of 40 fs. The critical fluence of the optical pump pulse, which drives the system into a long-lived metallic state, is found to increase with decreasing temperature. Under all measurement conditions, we observe a modulation of the eigenfrequencies of the optical phonon modes induced by their anharmonic coupling to the coherent wave-packet motion of V-V dimers at 6.1 THz. Furthermore, we find a weak quadratic coupling of the electronic response to the coherent dimer oscillation resulting in a modulation of the electronic conductivity at twice the frequency of the wave-packet motion. The findings are discussed in the framework of a qualitative model based on an approximation of local photoexcitation of the vanadium dimers from the insulating state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.