Abstract

Time-resolved infrared spectroscopy has the potential to provide unprecedented information about molecular dynamics in liquids. In the case of water, one of the most exciting techniques being developed is transient hole-burning. From experiments on dilute HOD in D 2O one can obtain the transition frequency time-correlation function for the OH stretch, finding that it decays on a time scale of between 0.5 and 1 ps. In this report we provide a molecular-level interpretation of this spectral diffusion in terms of the dynamics of forming and breaking hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.