Abstract

We have demonstrated a novel three-dimensional (3D) architecture of a graphene/carbon nanotube (G-CNT) hybrid synthesized at large scale within just 5 s via a simple microwave-heating method without the usage of any other conducting or expanding agent for the first time. The carbon composites obtained consist of evenly grown CNTs with an average diameter of about 15 nm on the surface of graphene nanosheets. The G-CNT hybrid exhibits enhanced electrochemical performance for both aqueous and organic supercapacitor devices. Particularly, the G-CNT electrodes demonstrate an enhanced specific capacitance of 361 F g−1 at a current density of 1.1 A g−1 in an aqueous electrolyte and a volumetric capacitance of 254 F cm−3 in an organic electrolyte. They also display excellent cycle stability with nearly 91.2% of the initial capacitance retained after 10 000 charging-discharging cycles at a current density of 15 A g−1. This demonstrates that the developed composites have potential applications in supercapacitors and other energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.