Abstract

We experimentally demonstrate the observation of a frequency-shift dynamics at a temporal boundary in the terahertz (THz) region relying on a scheme that controls the structural dispersion of a metal-semiconductor waveguide. Ultrafast structural-dispersion switching is achieved within a subpicosecond timescale by illuminating a waveguide surface with an optical pump pulse during the propagation of a THz pulse in the waveguide. Owing to the relatively high conversion efficiency, up to 23%, under the condition that the frequency shift is sufficiently larger than the bandwidth of the incident pulse, the rapid variation of the THz frequency around the temporal boundary is directly observed in the time domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.