Abstract

While nuclear magnetic resonance (NMR) is regarded as a reference in fragment-based drug design, its implementation in a high-throughput manner is limited by its lack of sensitivity resulting in long acquisition times and high micromolar sample concentrations. Several hyperpolarization approaches could, in principle, improve the sensitivity of NMR also in drug research. However, photochemically induced dynamic nuclear polarization (photo-CIDNP) is the only method that is directly applicable in aqueous solution and agile for scalable implementation using off-the-shelf hardware. With the use of photo-CIDNP, this work demonstrates the detection of weak binders in the millimolar affinity range using low micromolar concentrations down to 5 μM of ligand and 2 μM of target, thereby exploiting the photo-CIDNP-induced polarization twice: (i) increasing the signal-to-noise by one to two orders in magnitude and (ii) polarization-only of the free non-bound molecule allowing identification of binding by polarization quenching, yielding another factor of hundred in time when compared with standard techniques. The interaction detection was performed with single-scan NMR experiments of a duration of 2 to 5 s. Taking advantage of the readiness of photo-CIDNP setup implementation, an automated flow-through platform was designed to screen samples at a screening rate of 1500 samples per day. Furthermore, a 212 compounds photo-CIDNP fragment library is presented, opening an avenue toward a comprehensive fragment-based screening method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.