Abstract
Time-resolved infrared (TR-IR) absorption spectroscopy in both the femtosecond and nanosecond time domain has been applied to examine the photolysis of benzoic acid in acetonitrile solution following either 267 nm or 193 nm excitation. By combining the ultrafast and nanosecond TR-IR measurements, both the excited states and the photofragments have been detected and key mechanistic insights were obtained. We show that the solvent interaction modifies the excited state relaxation pathways and thus the population dynamics, leading to different photolysis behavior in solution from that observed in the gas phase. Vibrational energy transfer to solvents dissipates excitation energy efficiently, suppressing the photodissociation and depopulating the excited S(2) or S(3) state molecules to the lowest T(1) state with a rate of ∼2.5 ps after a delayed onset of ∼3.7 ps. Photolysis of benzoic acid using 267 nm excitation is dominated by the formation of the T(1) excited state and no photofragments could be detected. The results from TR-IR experiments using higher energy of 193 nm indicate that photodissociation proceeds more rapidly than the vibrational energy transfer to solvents and C-C bond fission becomes the dominant relaxation pathway in these experiments as featured by the prominent observation of the COOH photofragments and negligible yield of the T(1) excited state. The measured ultrafast formation of T(1) excited state supports the existence of the surface intersections of S(2)/S(1), S(2)/T(2), and S(1)/T(1)/T(2), and the large T(1) quantum yield of ∼0.65 indicates the importance of the excited state depopulation to triplet manifold as the key factor affecting the photophysical and photochemical behavior of the monomeric benzoic acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.