Abstract

Developing nonprecious oxygen evolution electrocatalysts that can work well at large current densities is of primary importance in a viable water-splitting technology. Herein, a facile ultrafast (5 s) synthetic approach is reported that produces a novel, efficient, non-noble metal oxygen-evolution nano-electrocatalyst that is composed of amorphous Ni-Fe bimetallic hydroxide film-coated, nickel foam (NF)-supported, Ni3 S2 nanosheet arrays. The composite nanomaterial (denoted as Ni-Fe-OH@Ni3 S2 /NF) shows highly efficient electrocatalytic activity toward oxygen evolution reaction (OER) at large current densities, even in the order of 1000 mA cm-2 . Ni-Fe-OH@Ni3 S2 /NF also gives an excellent catalytic stability toward OER both in 1 m KOH solution and in 30 wt% KOH solution. Further experimental results indicate that the effective integration of high catalytic reactivity, high structural stability, and high electronic conductivity into a single material system makes Ni-Fe-OH@Ni3 S2 /NF a remarkable catalytic ability for OER at large current densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call