Abstract

Epigenetic modifications impart important functionality to nucleic acids during gene expression but may increase the risk of photoinduced gene mutations. Thus, it is crucial to understand how these modifications affect the photostability of duplex DNA. In this work, the ultrafast formation (<20 ps) of a delocalized triplet charge transfer (CT) state spreading over two stacked neighboring nucleobases after direct UV excitation is demonstrated in a DNA duplex, d(G5fC)9•d(G5fC)9, made of alternating guanine (G) and 5-formylcytosine (5fC) nucleobases. The triplet yield is estimated to be 8 ± 3%, and the lifetime of the triplet CT state is 256 ± 22 ns, indicating that epigenetic modifications dramatically alter the excited state dynamics of duplex DNA and may enhance triplet state-induced photochemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call