Abstract

The first computational study of the folding and dynamics of a hydrophobic β-hairpin containing a central heterochiral diproline segment is reported. Linear hydrophobic sequences containing centrally positioned diproline motifs, heterochiral (DL/LD) and homochiral (LL/DD)), are investigated for their ability to form β-hairpins. Heterochiral diproline motifs (LD/DL) reveal the formation of stable β-hairpins with the backbone adopting β-turn conformation and the formation of backbone hydrogen bonds with antiparallel cross-strand registry, whereas the homochiral diproline (LL/DD) containing sequences tend to adopt PPII helix conformation. The competition between the β-turn formation and the backbone H-bond ladder of the antiparallel β-strands in heterochiral diproline containing sequences is employed to validate the hypothesis that β-turn formation precedes inter-strand registry in the folding of a β-hairpin (“zipper” mechanism). The observation of noncanonical hydrogen bonds leads to a folded β-hairpin-like conformation and points to the existence of relatively stable transition state intermediates, between the unfolded (extended) and folded (β-hairpin) states. The MD simulations are in excellent agreement with the experimental studies on the model system and constitute the very first computational investigation of the folding and dynamics of a completely hydrophobic synthetic β-hairpin containing heterogeneous residues of mixed chirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.