Abstract

We study exciton energy transfer in double-walled carbon nanotubes using femtosecond time-resolved luminescence measurements. From direct correspondence between decay of the innertube luminescence and the rise behavior in outertube luminescence, it is found that the time constant of exciton energy transfer from the inner to the outer semiconducting tubes is ∼150 fs. This ultrafast transfer indicates that the relative intensity of steady-state luminescence from the innertubes is ∼700 times weaker than that from single-walled carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.